

Report No.: DL-240705006ER

TEST REPORT

Applicant:	Nemo Power Tools Limited
Address:	21st Floor, CMA Building 64 Connaught Road Central Hong Kong
Manufacturer:	Nemo Power Tools(Huizhou) Co., Ltd
Address:	2/F, 4th Industrial Area, Luokeng Village, Xiaotie Zone, Xiaojinkou Town, Huicheng District, Huizhou City, Guangdong Province, China
EUT:	GRABO High Flow
Trade Mark:	GRABO
Model Number:	GHF-V1
Date of Receipt:	Jul. 05, 2024
Test Date:	Jul. 05, 2024 - Jul. 12, 2024
Date of Report:	Jul. 12, 2024
Prepared By:	Shenzhen DL Testing Technology Co., Ltd.
Address:	101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China EN IEC 55014-1:2021
Applicable Standards:	EN IEC 61000-3-2:2019+A1:2021, EN 61000-3-3:2013+A1:2019+A2:2021 EN IEC 55014-2:2021 EN 61000-4-2:2009, EN IEC 61000-4-3:2020, EN 61000-4-4:2012, EN 61000-4-5:2014+A1:2017, EN IEC 61000-4-6:2023, EN IEC 61000-4-11:2020
Test Result:	Pass at a cent of cent of cent of
Report Number:	DL-240705006ER

Prepared (Engineer):

HuiLian Xu

Reviewer (Supervisor):

Approved (Manager):

Jade Yang

Jack Bu

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-240705006ER

TABLE OF CONTENT

TABLE OF CONTENT	
Test Report Declaration	Page
1. VERSION	
2. TEST SUMMARY	
3. GENERAL INFORMATION	4
4. TEST INSTRUMENT USED	5
5. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST	
6. DISTURBANCE POWER EMISSION TEST	
7. RADIATION EMISSION TEST	
8. HARMONIC CURRENT EMISSION TEST	
9. VOLTAGE FLUCTUATIONS & FLICKER TEST	
10. IMMUNITY TEST OF GENERAL THE PERFORMANCE CRIT	ERIA25
11. ELECTROSTATIC DISCHARGE IMMUNITY TEST	
12. RF FIELD STRENGTH SUSCEPTIBILITY TEST	
13. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	
14. SURGE TEST	
15. INJECTED CURRENTS SUSCEPTIBILITY TEST	
16. VOLTAGE DIPS AND INTERRUPTIONS TEST	
17. SETUP PHOTOGRAPHS	
18. EUT PHOTOGRAPHS	

or.

Report No.: DL-240705006ER

1. VERSION

Date	Description
Jul. 12, 2024	Original
	A OV CON A

2. TEST SUMMARY

	EMC Emission								
Standard	Test Item	Limit	Result	Remark					
or of v	Conducted Emission at power ports	× <u> </u>	PASS	ON ce					
× 0°	Conducted Emission at load terminals	<u> </u>	○ N/A	- AV					
EN 55014-1	Disturbance power Emission	× 🔿	PASS						
	Radiated Emission below 1GHz	ý	PASS						
EN 61000-3-2	Harmonic Current Emission	Class B	PASS	1 and a start					
EN 61000-3-3	Voltage Fluctuations & Flicker	0 ¹	PASS	Co x					
	EMC Immunity	-							

EMC Immunity

Section EN 55014-2	Test Item	Performance Criteria	Result	Remark
EN 61000-4-2	Electrostatic Discharge	В	PASS	
EN 61000-4-3	RF electromagnetic field	A	PASS	er.
EN 61000-4-4	Fast transients	В	PASS	- OK
EN 61000-4-5	Surges	О́В с	PASS	
EN 61000-4-6	Injected Current	A	PASS	, Co
EN 61000-4-11	Volt. Interruptions Volt. Dips	C / C / C ^{NOTE (3)}	PASS	\bigcirc^{\vee}

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) The power consumption of EUT is less than 75W and no Limits apply.
- (3) Voltage dip: 70% reduction Performance Criteria B
 - Voltage Interruptions: 30% reduction Performance Criteria C
- (4) Test Facility: Shenzhen DL Testing Technology Co., Ltd.
- Address: 101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China

Report No.: DL-240705006ER

3. GENERAL INFORMATION

3.1 Description of Device (EUT)

GRABO High Flow
GRABO
GHF-V1
GHF-V1
N/A
Charging Input: 100-240V \sim 50/60Hz 2A max 84W \sim
Charging Output: 21V 3.6-4.4A under load 4.5A max
Battery: DC 20V
Below 15MHz

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Mode2.

On Mode

(2) The EUT's all information provided by client.

3.2 Tested System Details

None.

3.3 Block Diagram of Test Set-up

AC Mains

- 3.4 Test Mode Description Mode1. Charging Mode
- 3.5 Test Auxiliary Equipment None.
- 3.6 Test Uncertainty

Conducted Emission Uncertainty : ±2.56dB

EUT

Radiated Emission Uncertainty : ±3.24dB

Report No.: DL-240705006ER

4. TEST INSTRUMENT USED

For Conducted Emission Test (843 Shielded Room)

Manufacturer	Model	Serial	Last Cal.	Next Cal.
YIHENG	843 Room	843	Nov. 05, 2023	Nov. 04, 2026
R&S	ESR	101421	Nov. 04, 2023	Nov. 03, 2024
R&S	ENV216	102417	Nov. 04, 2023	Nov. 03, 2024
COM-POWER	CLA-050	431072	Nov. 04, 2023	Nov. 03, 2024
DAZE	ZN30401	13021	Nov. 04, 2023	Nov. 03, 2024
Schwarzbeck	NTFM 8158	101135	Nov. 04, 2023	Nov. 03, 2024
Schwarzbeck	NTFM 8158	101136	Nov. 04, 2023	Nov. 03, 2024
ChengYu	CE Cable	001	Nov. 04, 2023	Nov. 03, 2024
ChengYu	CE Cable	002	Nov. 04, 2023	Nov. 03, 2024
	YIHENG R&S R&S COM-POWER DAZE Schwarzbeck Schwarzbeck ChengYu	YIHENG843 RoomR&SESRR&SENV216COM-POWERCLA-050DAZEZN30401SchwarzbeckNTFM 8158SchwarzbeckNTFM 8158ChengYuCE Cable	YIHENG 843 Room 843 R&S ESR 101421 R&S ENV216 102417 COM-POWER CLA-050 431072 DAZE ZN30401 13021 Schwarzbeck NTFM 8158 101135 Schwarzbeck NTFM 8158 101136 ChengYu CE Cable 001	YIHENG 843 Room 843 Nov. 05, 2023 R&S ESR 101421 Nov. 04, 2023 R&S ENV216 102417 Nov. 04, 2023 COM-POWER CLA-050 431072 Nov. 04, 2023 DAZE ZN30401 13021 Nov. 04, 2023 Schwarzbeck NTFM 8158 101135 Nov. 04, 2023 ChengYu CE Cable 001 Nov. 04, 2023

For Radiated Emission Test (966 chamber)

Manufacturer	Model	Serial	Last Cal.	Next Cal.
YIHENG	966 Room	966-0	Nov. 06, 2023	Nov. 05, 2026
Agilent	E4408B	MY50140780	Nov. 04, 2023	Nov. 03, 2024
R&S	ESRP7	101393	Nov. 04, 2023	Nov. 03, 2024
Schwarzbeck	BBV9743B	00153	Nov. 04, 2023	Nov. 03, 2024
EMEC	EM01G8GA	00270	Nov. 04, 2023	Nov. 03, 2024
Schwarzbeck	VULB9162	00306	Nov. 04, 2023	Nov. 03, 2024
Schwarzbeck	BBHA9120D	02139	Nov. 04, 2023	Nov. 03, 2024
ChengYu	966	004	Nov. 04, 2023	Nov. 03, 2024
ChengYu	966	003	Nov. 04, 2023	Nov. 03, 2024
	YIHENG Agilent R&S Schwarzbeck EMEC Schwarzbeck Schwarzbeck ChengYu	YIHENG966 RoomAgilentE4408BR&SESRP7SchwarzbeckBBV9743BEMECEM01G8GASchwarzbeckVULB9162SchwarzbeckBBHA9120DChengYu966	YIHENG966 Room966AgilentE4408BMY50140780R&SESRP7101393SchwarzbeckBBV9743B00153EMECEM01G8GA00270SchwarzbeckVULB916200306SchwarzbeckBBHA9120D02139ChengYu966004	YIHENG966 Room966Nov. 06, 2023AgilentE4408BMY50140780Nov. 04, 2023R&SESRP7101393Nov. 04, 2023SchwarzbeckBBV9743B00153Nov. 04, 2023EMECEM01G8GA00270Nov. 04, 2023SchwarzbeckVULB916200306Nov. 04, 2023SchwarzbeckBBHA9120D02139Nov. 04, 2023ChengYu966004Nov. 04, 2023

For Harmonic & Flicker Test (EMS --- site)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
Harmonics, Flicker & power Analyser	LAPLACE INSTRUMENTS	AC2000A	311370	Nov. 04, 2023	Nov. 03, 2024
AC Power Supply	MToni	HPF5010	633659	Nov. 04, 2023	Nov. 03, 2024

For Electrostatic Discharge Immunity Test (EMS --- site)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
ESD Tester	SCHLODER	SESD 230	17352	Nov. 04, 2023	Nov. 03, 2024

Report No.: DL-240705006ER

	5			$\langle \rangle^* = c O^*$		
Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.	
Signal Generator	∠o [©] HP	8648A	3625U00573	Apr. 11, 2024	Apr. 11, 2025	
Amplifier	A&R	500A100	17034	Apr. 11, 2024	Apr. 11, 2025	
Amplifier	A&R	100W/1000M1	17028	Apr. 11, 2024	Apr. 11, 2025	
Audio Analyzer (20Hz~1GHz)	Panasonic	2023B	202301/428	Apr. 11, 2024	Apr. 11, 2025	
Isotropic Field Probe	A&R	FP2000	16755	Apr. 11, 2024	Apr. 11, 2025	
Antenna	EMCO	3108	9507-2534	Apr. 11, 2024	Apr. 11, 2025	
Log-periodic Antenna	A&R	AT1080	16812	Apr. 11, 2024	Apr. 11, 2025	

For RF Field Strength Susceptibility Test (Keyway --- site)

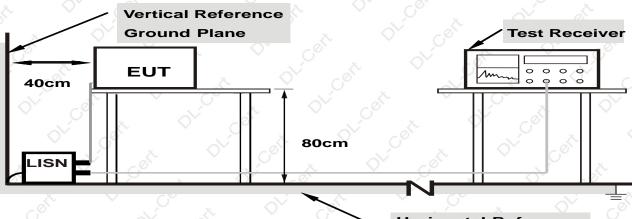
For EFT /B, Surge, Voltage Dips Interruptions Test (EMS --- site)

	Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
~	Transient Comprehensive Immunity Test System	Graphtec	HVIP16T+HCO MPACT 5	192501+192202	Nov. 04, 2023	Nov. 03, 2024
	Coupling Clamp	HTEC	് 001_്	0001	Nov. 04, 2023	Nov. 03, 2024

For Injected Currents Susceptibility Test (EMS --- site)

Equipment	Equipment Manufacturer		Model Serial		Next Cal.
C/S Test System		RIS-6091-85	0191101	Nov. 04, 2023	Nov. 03, 2024
CDN CDN	LIONCEL	CDN-M2-16	0191001	Nov. 04, 2023	Nov. 03, 2024
CDN	LIONCEL	CDN-M3-16	0191002	Nov. 04, 2023	Nov. 03, 2024
Injection Clamp	Frankonia	EMCL-20	18101728-0108	Nov. 04, 2023	Nov. 03, 2024

Other


Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

Report No.: DL-240705006ER

5. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

5.1 Block Diagram of Test Setup

Horizontal Reference Ground Plane

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

5.2 Test Standard and Limit

EN 55014-1

			\sim \sim	C.			
	Limits dB(µV)						
Frequency	At mair	ns terminals	At load terminals and				
	7.4.11041		additional terminals				
MHz	Quasi-peak	Average	Quasi-peak	Average			
	Level	Level	Level	Level			
0.15~0.50	66 ~ 56*	59 ~ 46*	80	J 70			
0.50~5.00	56	46	74	64			
5.00~30.00	60	50 🗸	[©] 74	64			

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

5.3 EUT Configuration on Test

The following equipment's are installed on conducted emission test to meet EN 55014-1 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

5.4 Operating Condition of EUT

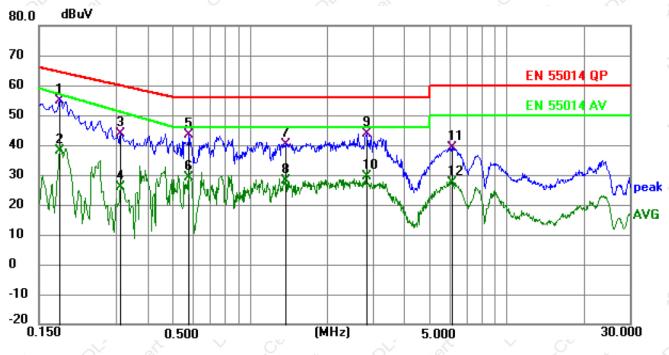
- 5.4.1 Setup the EUT and simulators as shown in Section 5.1.
- 5.4.2 Turn on the power of all equipment.
- 5.4.3 Let the EUT work in test modes and test it.

5.5 Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **EN 55014-1** regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESR) is set at 10KHz. The frequency ranges from 150kHz to 30MHz is investigated.

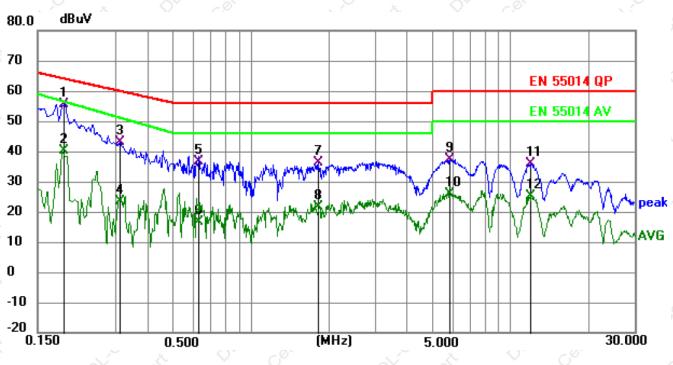
5.6 Test Result


PASS

Shenzhen DL Testing Technology Co., Ltd	I .
---	------------

Report No.: DL-240705006ER

Conducted Emission Test Data									
Temperature:	24.5℃	Relative Humidity:	54%						
Pressure:	1009hPa	Phase:	Line						
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1						

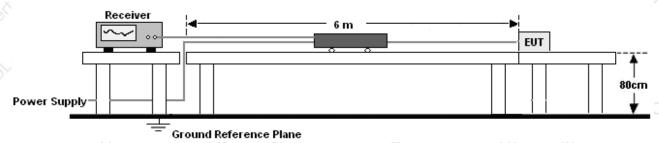

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1 *	0.1815	45.27	9.67	54.94	64.42	-9.48	QP	Р	
2	0.1815	28.20	9.67	37.87	56.94	-19.07	AVG	Р	
3	0.3120	33.72	9.92	43.64	59.92	-16.28	QP	Р	
4	0.3120	15.84	9.92	25.76	51.09	-25.33	AVG	Р	
5	0.5775	33.59	9.77	43.36	56.00	-12.64	QP	Р	
6	0.5775	19.50	9.77	29.27	46.00	-16.73	AVG	Р	
7	1.3740	30.27	9.98	40.25	56.00	-15.75	QP	Р	
8	1.3740	17.88	9.98	27.86	46.00	-18.14	AVG	Р	
9	2.8410	33.65	9.95	43.60	56.00	-12.40	QP	Р	
10	2.8410	19.46	9.95	29.41	46.00	-16.59	AVG	Р	
11	6.1035	29.10	9.98	39.08	60.00	-20.92	QP	Р	
12	6.1035	17.48	9.98	27.46	50.00	-22.54	AVG	Р	

Remark:Correct Factor = Cable lose + LISN insertion loss; Level = Reading + Correct factor;Margin = Level – Limit;

Report No.: DL-240705006ER

	<u> </u>	\bigcirc^{*} \bigcirc°						
Conducted Emission Test Data								
Temperature:	24.5℃	Relative Humidity:	54%					
Pressure:	1009hPa	Phase:	Neutral					
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1					

									2.2	
N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	*	0.1905	45.49	9.88	55.37	64.01	-8.64	QP	Ρ	
2	2	0.1905	30.31	9.88	40.19	56.42	-16.23	AVG	Ρ	
3	3	0.3120	33.05	9.90	42.95	59.92	-16.97	QP	Ρ	
4	1	0.3120	13.65	9.90	23.55	51.09	-27.54	AVG	Ρ	
5	5	0.6270	26.75	9.95	36.70	56.00	-19.30	QP	Ρ	
6	6	0.6270	6.70	9.95	16.65	46.00	-29.35	AVG	Ρ	
7	7	1.8285	26.12	9.96	36.08	56.00	-19.92	QP	Ρ	
8	3	1.8285	11.53	9.96	21.49	46.00	-24.51	AVG	Ρ	
Ş	9	5.8605	27.37	9.92	37.29	60.00	-22.71	QP	Ρ	
1	0	5.8605	15.82	9.92	25.74	50.00	-24.26	AVG	Ρ	
1	1	11.9490	25.75	10.03	35.78	60.00	-24.22	QP	Ρ	
1	2	11.9490	15.20	10.03	25.23	50.00	-24.77	AVG	Ρ	


Remark:Correct Factor = Cable lose + LISN insertion loss; Level = Reading + Correct factor;Margin = Level – Limit;

Report No.: DL-240705006ER

6. DISTURBANCE POWER EMISSION TEST

6.1 Block Diagram of Test Setup

6.2 Test Standard and Limit

EN 55014-1

Frequency	Limits dB(pW)						
MHz	Quasi-peak Level	Average Level					
30-300	45-55	35-45					

Notes: The limit Increasing linearly with the frequency from 30 to 300MHz.

Margin when performing disturbance power Measurement in the frequency range 30 MHz to 300 MHz

Margin Quasi-peak dB(pW)	
Household and similar appliances / Tools	
0 to 10	-
	Household and similar appliances / Tools

Note: The limit Increasing linearly with the frequency from 200 to 300MHz.

6.3 EUT Configuration on Test

The following equipment's are installed on conducted emission test to meet EN 55014-1 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

6.4 Operating Condition of EUT

6.4.1 Setup the EUT and simulators as shown in Section 6.1.

- 6.4.2 Turn on the power of all equipment.
- 6.4.3 Let the EUT work in test modes and test it.

6.5 Test Procedure

a. The absorbing clamp was placed around the lead to be measured, with its current transformer towards the equipment under test.

b. All connectors having a connected lead shall be terminated in a manner representative of use.

c. The absorbing clamp was applied successively to all leads whose length is 25cm or longer,

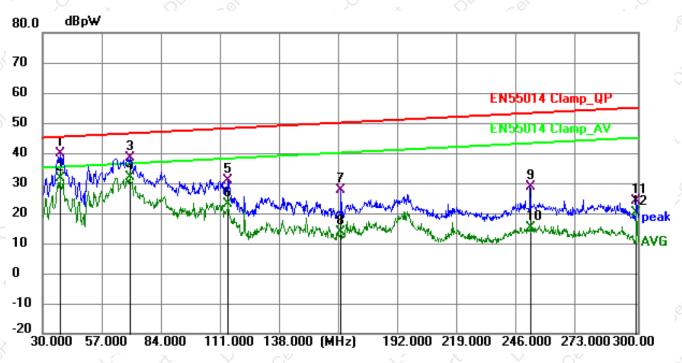
unscreened or screened, which may be connected to the individual units of the equipment under test. d. The Product was placed on a nonconductive table of 0.8 m of height above the floor and at least 0.8m from other metallic objects and from any person. The lead to be measured shall be stretched in a

straight horizontal line for length sufficient to accommodate the absorbing clamp.

e. Pre-scans were performed with a quasi-peak detector and an average detector.

f. At each test frequency the absorbing clamp shall be moved along the lead until the maximum value is found between a position adjacent to the equipment under test and a distance of about a half wavelength from it.

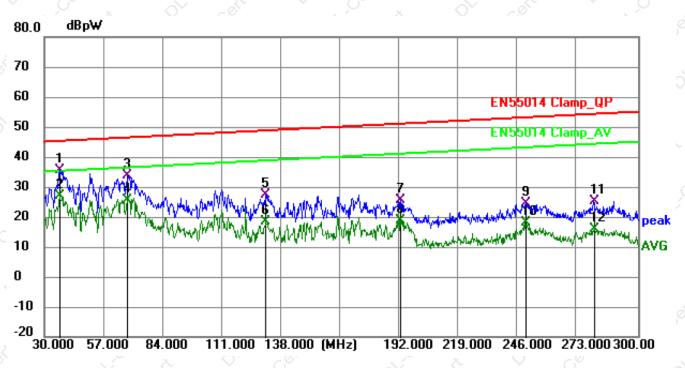
The bandwidth of the test receiver (R&S Test Receiver ESR) is set at 10KHz.


6.6 Test Result

PASS

Report No.: DL-240705006ER

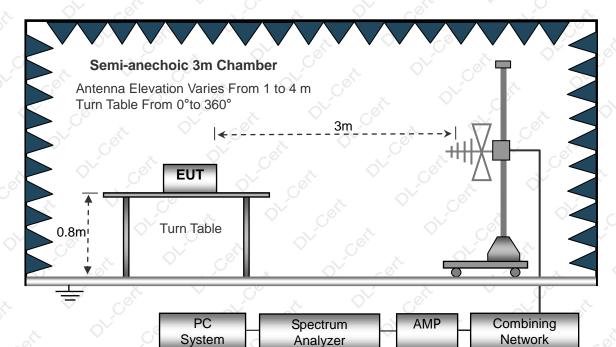
Disturbance Power Test Data								
Temperature:	26 ℃	Relative Humidity:	54%					
Pressure:	1009hPa	Test Line:	AC Line					
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1					


No.	Frequency (MHz)	Reading (dBpW)	Factor (dB)	Level (dBpW)	Limit (dBpW)	Margin (dB)	Detector	Position (cm)	P/F	Remark
1	37.9800	22.43	17.48	39.91	45.30	-5.39	QP		Р	
2 *	37.9800	14.23	17.48	31.71	35.30	-3.59	AVG		Р	
3	69.9000	20.53	17.82	38.35	46.48	-8.13	QP		Р	
4	69.9000	14.07	17.82	31.89	36.48	-4.59	AVG		Р	
5	114.3600	13.91	16.86	30.77	48.12	-17.35	QP		Р	
6	114.3600	6.05	16.86	22.91	38.12	-15.21	AVG		Р	
7	165.4200	13.41	14.27	27.68	50.02	-22.34	QP		Р	
8	165.4200	-0.60	14.27	13.67	40.02	-26.35	AVG		Р	
9	251.5200	10.13	18.59	28.72	53.20	-24.48	QP		Р	
10	251.5200	-3.28	18.59	15.31	43.20	-27.89	AVG		Р	
11	299.7000	6.84	17.16	24.00	54.99	-30.99	QP		Р	
12	299.7000	2.98	17.16	20.14	44.99	-24.85	AVG		Р	

Remark:Correct Factor = Cable lose + LISN insertion loss; Level = Reading + Correct factor;Margin = Level – Limit;

Report No.: DL-240705006ER

Disturbance Power Test Data								
Temperature:	26℃	Relative Humidity:	54%					
Pressure:	1009hPa	Test Line:	DC Line					
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1					


No.	Frequency (MHz)	Reading (dBpW)	Factor (dB)	Level (dBpW)	Limit (dBpW)	Margin (dB)	Detector	Position (cm)	P/F	Remark
1	37.0200	18.01	17.46	35.47	45.26	-9.79	QP		Р	
2 *	37.0200	9.63	17.46	27.09	35.26	-8.17	AVG		Р	
3	68.0400	15.89	17.89	33.78	46.41	-12.63	QP		Р	
4	68.0400	7.72	17.89	25.61	36.41	-10.80	AVG		Р	
5	130.8000	11.52	15.82	27.34	48.73	-21.39	QP		Р	
6	130.8000	2.54	15.82	18.36	38.73	-20.37	AVG		Р	
7	192.0600	9.75	15.64	25.39	51.00	-25.61	QP		Р	
8	192.0600	3.11	15.64	18.75	41.00	-22.25	AVG		Р	
9	249.0000	5.93	18.55	24.48	53.11	-28.63	QP		Р	
10	249.0000	-0.41	18.55	18.14	43.11	-24.97	AVG		Р	
11	280.0200	6.52	18.49	25.01	54.26	-29.25	QP		Р	
12	280.0200	-2.46	18.49	16.03	44.26	-28.23	AVG		Р	

Remark:Correct Factor = Cable lose + LISN insertion loss; Level = Reading + Correct factor;Margin = Level – Limit;

7. RADIATION EMISSION TEST

7.1 Block Diagram of Test Setup

7.2 Test Standard and Limit

EN 55014-1

1			
	Frequency	Distance	Field Strengths Limits
	MHz	(Meters)	dB(µV)/m
	30~230	3 0	40.0
5	230~1000	30000	47.0

Remark:

(1) The smaller limit shall apply at the cross point between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

7.3 EUT Configuration on Test

The EN 55014-1 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 2.2.

7.4 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

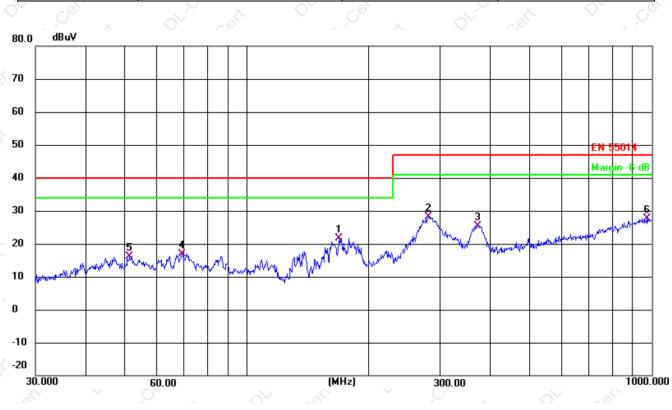
7.5 Test Procedure

1) The radiated emissions test was conducted in a semi-anechoic chamber.

2) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

3) Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT.

4) The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.


5) The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz.6) The frequency range from 30MHz to 1000MHz is checked.

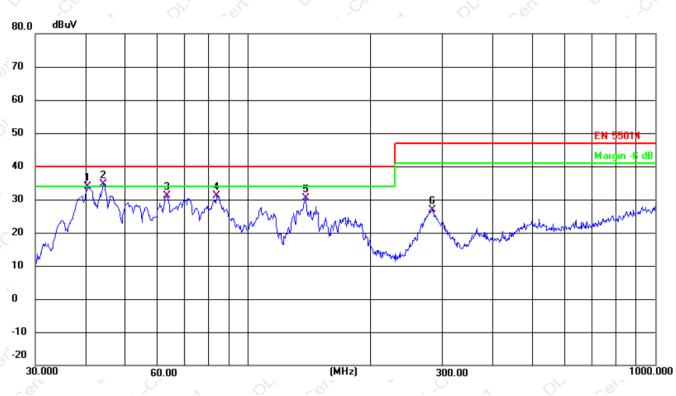
7.6 Test Result

Report No.: DL-240705006ER

Radiation Emission Test Data							
Temperature:	24.5℃	Relative Humidity:	54%				
Pressure:	1009hPa	Polarization:	Horizontal				
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1				

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dB	dB	Detector
1 *	169.0053	38.69	-17.04	21.65	40.00	-18.35	QP
2	281.0074	40.51	-12.29	28.22	47.00	-18.78	QP
3	372.0045	35.77	-10.36	25.41	47.00	-21.59	QP
4	69.1140	33.53	-16.65	16.88	40.00	-23.12	QP
5	51.3004	29.14	-13.01	16.13	40.00	-23.87	QP
6	972.3373	27.63	-0.05	27.58	47.00	-19.42	QP

Remark:


Correct Factor=Cable loss+Antenna factor-Preamplifier

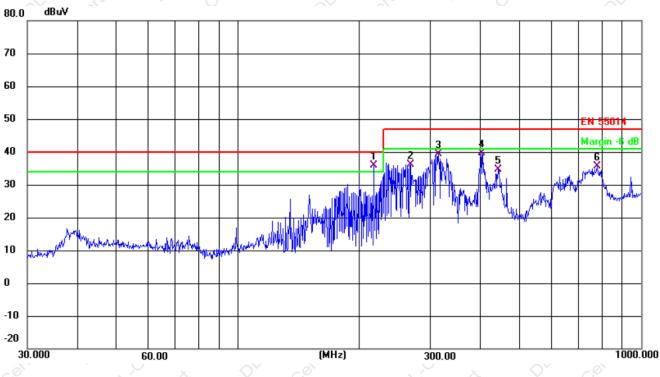
MeasurementLevel = Reading Level + Correct Factor; Margin = Measurement Level- Limit;

Report No.: DL-240705006ER

Radiation Emission Test Data								
Temperature:	24.5 ℃	Relative Humidity:	54%					
Pressure:	1009hPa	Polarization:	Vertical					
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1					

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dB	dB	Detector
1	40.4170	47.84	-14.00	33.84	40.00	-6.16	QP
2 *	44.1202	47.81	-13.18	34.63	40.00	-5.37	QP
3	63.0916	45.52	-14.51	31.01	40.00	-8.99	QP
4	83.8155	49.50	-18.31	31.19	40.00	-8.81	QP
5	138.3873	48.77	-18.37	30.40	40.00	-9.60	QP
6	282.9851	39.19	-12.40	26.79	47.00	-20.21	QP
•							

Remark:

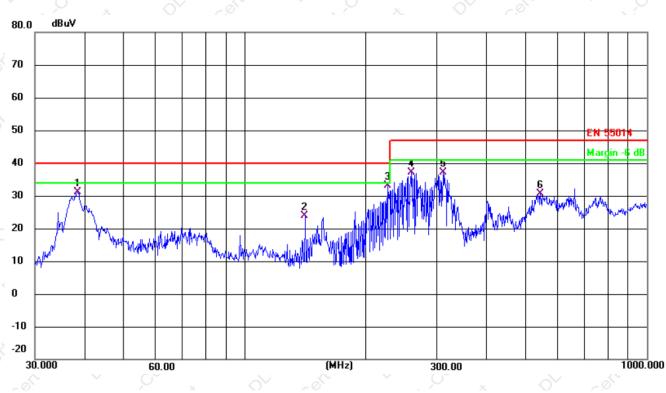

Correct Factor=Cable loss+Antenna factor-Preamplifier

MeasurementLevel = Reading Level + Correct Factor; Margin = Measurement Level- Limit;

Report No.: DL-240705006ER

Radiation Emission Test Data							
Temperature:	24.5 ℃	Relative Humidity:	54%				
Pressure:	1009hPa	Polarization:	Horizontal				
Test Voltage:	DC 20V	Test Mode:	Mode 2				
C ^O	ON CON	V Co x O					

MHz	dBuV	dB	dDu\/			
246 7020			dBuV	dB	dB	Detector
210.7828	50.23	-14.25	35.98	40.00	-4.02	QP
268.4852	48.74	-12.59	36.15	47.00	-10.85	QP
314.3764	50.76	-11.44	39.32	47.00	-7.68	QP
401.8384	49.09	-9.50	39.59	47.00	-7.41	QP
441.7425	43.26	-8.59	34.67	47.00	-12.33	QP
776.8778	37.97	-2.46	35.51	47.00	-11.49	QP
	314.3764 401.8384 441.7425	268.485248.74314.376450.76401.838449.09441.742543.26	268.485248.74-12.59314.376450.76-11.44401.838449.09-9.50441.742543.26-8.59	268.485248.74-12.5936.15314.376450.76-11.4439.32401.838449.09-9.5039.59441.742543.26-8.5934.67	268.485248.74-12.5936.1547.00314.376450.76-11.4439.3247.00401.838449.09-9.5039.5947.00441.742543.26-8.5934.6747.00	268.485248.74-12.5936.1547.00-10.85314.376450.76-11.4439.3247.00-7.68401.838449.09-9.5039.5947.00-7.41441.742543.26-8.5934.6747.00-12.33


Remark:

Correct Factor=Cable loss+Antenna factor-Preamplifier MeasurementLevel = Reading Level + Correct Factor; Margin = Measurement Level-Limit;

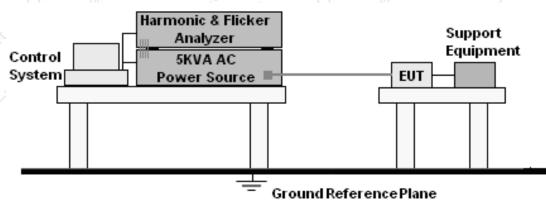
Report No.: DL-240705006ER

Radiation Emission Test Data							
Temperature:	24.5 ℃	ON COR	Relative Humidity:	54%			
Pressure:	1009hPa		Polarization:	Vertical			
Test Voltage:	DC 20V		Test Mode:	Mode 2			

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dB	dB	Detector
1	38.3462	45.59	-14.53	31.06	40.00	-8.94	QP
2	141.3296	42.40	-18.42	23.98	40.00	-16.02	QP
3 *	226.8936	47.11	-13.98	33.13	40.00	-6.87	QP
4	259.2338	50.42	-13.23	37.19	47.00	-9.81	QP
5	311.0866	48.87	-11.78	37.09	47.00	-9.91	QP
6	543.2742	36.85	-6.34	30.51	47.00	-16.49	QP

Remark:

Correct Factor=Cable loss+Antenna factor-Preamplifier


MeasurementLevel = Reading Level + Correct Factor; Margin = Measurement Level-Limit;

Report No.: DL-240705006ER

8. HARMONIC CURRENT EMISSION TEST

8.1 Block Diagram of Test Setup

8.2 Test Standard

EN 61000-3-2

8.3 Operating Condition of EUT

Setup the EUT as shown in Section 8.1.

Turn on the power of all equipment.

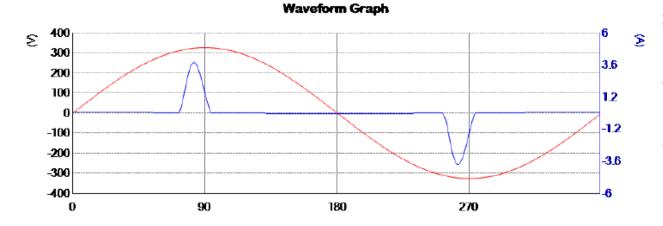
Let the EUT work in test mode and test it.

8.4 Test Procedure

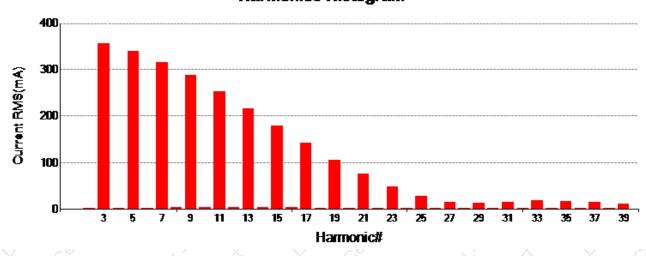
The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

8.5 Test Results

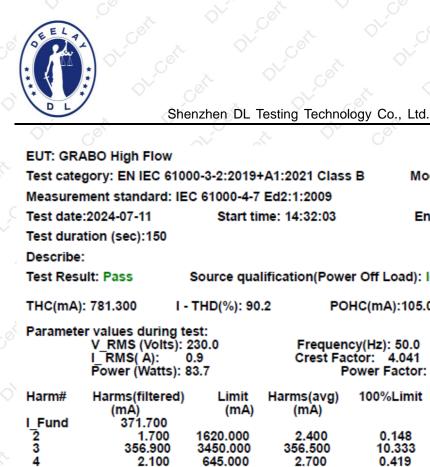
PASS



Report No.: DL-240705006ER


Operator:

EUT: GRABO High Flow	Opera	
Test category: EN IEC 610	Model/Type:GHF-V1	
Measurement standard: IE	EC 61000-4-7 Ed2:1:2009	Serial number:
Test date:2024-07-11	Start time: 14:32:03	End time: 14:34:43
Test duration (sec):150		
Describe:		


Test Result: Pass Source qualification(Power Off Load): Idle - Pass <u>Current & voltage waveforms</u>

Harmonics and Class B

Harmonics Histogram

Report No.: DL-240705006ER

EUT: GR/	ABO High Flow				Ope	erator:	
Test cate	gory: EN IEC 610	00-3-2:2019+	A1:2021 Class	s B Moo	del/Type:GHF-V	1	
Measurer	ment standard: IE	EC 61000-4-7	Ed2:1:2009		Serial number	r:	
	:2024-07-11		ne: 14:32:03	En	d time: 14:34:43		
		Start tin	16. 14.02.00	E11	u time. 14.04.40	,	
	tion (sec):150						
Describe	:						
Test Resu	ult: Pass	Source qual	ification(Powe	er Off Load): lo	dle - Pass		
THC(mA)	. 791 200	TUD(%): 00				Linait/ma ():277	020
THC(mA)	. /81.300	- THD(%): 90.	2 FO	HC(mA):105.0	NU FORC	Limit(mA):377	.030
Paramete	er values during t						
	V_RMS (Volts):			cy(Hz): 50.0			
		0.9		ctor: 4.041	0.440		
	Power (Watts):	83.7	P	ower Factor:	0.419		
Harm#	Harms(filtered)	Limit	Harms(avg)	100%Limit	Harms(max)	150%Limit	Status
	(mA)	(mA)	(mA)		(mA)		
I_Fund	371.700 1.700	1620.000	2.400	0.148	6.400	0.263	Pass
2 3 4 5 6	356.900	3450.000	356.500	10.333	357.100	6.900	Pass
4	2.100	645,000	2,700	0.419	6.100	0.630	Pass
5	340.200	1710.000	339.800	19.871	340.400	13.271	Pass
6	2.600	450.000	3.000	0.667	5.900	0.874	Pass
7	316.600	1155.000	316.200	27.377	317.200	18.309	Pass
8	3.000	345.000	3.200	0.928	5.500	1.063	Pass
9	287.000	600.000	286.400	47.733	287.700	31.967	Pass
10	3.200	276.000	3.300	1.196	5.300	1.280	Pass
11 12	253.000 3.400	495.000 229.950	252.400 3.300	50.990 1.435	254.000 5.200	34.209 1.508	Pass Pass
13	216.300	315.000	215.700	68.476	217.700	46.074	Pass
14	3.400	197.100	3.200	1.624	4.800	1.624	Pass
15	178.500	225.000	177.900	79.067	180.100	53.363	Pass
16	3.000	172.500	3.100	1.797	4.400	1.700	Pass
17	141.700	198.600	141.000	70.997	143.500	48.171	Pass
18	2.800	153.300	2.800	1.826	4.100	1.783	Pass
19	106.800	177.600	106.200	59.797	108.600	40.766	Pass
20	2.500	138.000	2.500	1.812	3.500	1.691	Pass
21 22	75.700 1.900	160.650 125.400	75.000 2.200	46.685 1.754	77.500 3.000	32.161 1.595	Pass Pass
23	49.000	146.700	48.500	33.061	50.700	23.040	Pass
24	1,600	115.050	1.700	1.478	2.600	1.507	Pass
25	28.000	135.000	27.700	20.519	29.300	14.469	Pass
26	1.000	106.200	1.300	1.224	2.300	1.444	Pass
27	14.500	124.950	14.700	11.765	15.100	8.057	Pass
28	0.500	98.550	0.900	0.913	1.700	1.150	Pass
29	12.200	116.400	12.800	10.997	14.500	8.305	Pass
30 31	0.300 15.800	91.950 108.900	0.600 16.300	0.653 14.968	1.600 17.800	1.160 10.897	Pass Pass
32	0.100	86.250	0.500	0.580	1.400	1.082	Pass
33	17.900	102.300	18.400	17.986	19.600	12.773	Pass
34	0.300	81.150	0.500	0.616	1.200	0.986	Pass
35	17.600	96.450	17.900	18.559	18.800	12.995	Pass
36	0.300	76.650	0.600	0.783	1.200	1.044	Pass
37	15.200	91.200	15.500	16.996	16.300	11.915	Pass
38	0.300	72.600	0.600	0.826	1.000	0.918	Pass
39 40	11.500 0.500	86.550 69.000	11.600 0.700	13.403 1.014	12.400 1.000	9.551 0.966	Pass Pass
	0.000	00.000	0.700	1.014	1.000	0.000	F 455

40 0.500 69.000 0.700 1.014 Note: All harmonics are below the minimum limits and are ignored.

Report No.: DL-240705006ER

9. VOLTAGE FLUCTUATIONS & FLICKER TEST

9.1 Block Diagram of Test Setup

Same as Section 8.1.

9.2 Test Standard

EN 61000-3-3

9.3 Operating Condition of EUT

Same as Section 8.3. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

F	licker Te	st Limit		\diamond	CON	Ň , j	X
	Test ite	ms		Limits			
	Pst	CO X	ON col	1.0		χ. <	2 ¹
	dc	Qr Cer		3.3%	Qr Ce		al.
	Tmax	ON cel		4.0%	0 ¹	CON	\sim
	dt		A A	Not exce	ed 3.3% for 50	00ms	

9.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

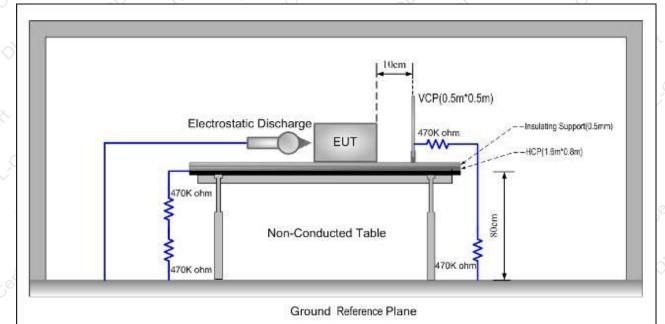
9.5 Test Results

V	Flic	cker Test Data	· ()	~~
Temperature: 24.5°C Relativ			idity: 54%	\times \circ^{\vee}
Test Voltage:	AC 230V/50Hz	Test Mode:	Mode 1	-jot
V jo		v jo	× 0 [×]	- S
Voltage Fluctuat	ion		ک ^م Limit	Value
Relative Voltage	e Change Characteristic Tm	ax (dc>3%)	500 ms	0 ms
		Cor	4%	0.00
Maximum Relative Voltage Change dmax			6%	2 10
	Change uniax		7%	
Ohio cer	Relative Steady-state Voltag Change dc	e oh	3.3%	0.00
	X Q G			C ^O
Flicker			Limit	Value
S	hort-term Flicker Indicator P	st	1.0	0.063
со _х	ong-term Flicker Indicator P	Plt S	0.65	1

Report No.: DL-240705006ER

Ò

10.IMMUNITY TEST OF GENERAL THE PERFORMANCE CRITERIA


Product Standard	EN 55014-2
CRITERION A	The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may resonably expect from the apparatus if used as intended
CRITERION B	The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
CRITERION C	Temporary loss of function is allowed, provided the function is self- recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Report No.: DL-240705006ER

11.ELECTROSTATIC DISCHARGE IMMUNITY TEST

11.1 Block Diagram of Test Setup

- 11.2 Test Standard
 - EN 55014-2, EN 61000-4-2
- 11.3 Severity Levels and Performance Criterion
 - Severity Level: 3 / Air Discharge: ±8KV
 - Level: 2 / Contact Discharge: ±4KV
 - Performance criterion: B

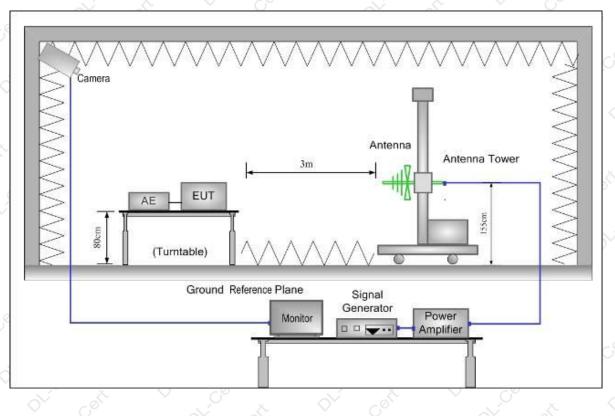
11.4 Test Procedure

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling
 Plane at points on each side of the Product. The ESD generator was positioned vertically at a
 distance of 0.1 meters from the Product with the discharge electrode touching the HCP.

h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

11.5 Test Results

PASS


		Electro	ostatic Dis	char	ge Test Data			
Temperature	:	25.1℃		Humi	dity:	55%	2 [×]	
Power Supply:		AC 230V/50Hz DC 20V		Test Mode:		Mode 1/2	con	
Discharge Method	Disc	charge Position	Voltaç (±kV	-9	Min. No. of Discharge per polarity (Each Point)	Required	Result	
	Conduct	Conductive Surfaces		$\langle \rangle$	10	В	Pass	
Contact	Indirect	Indirect Discharge HCP			10	В	Pass	
Discharge	Indirect	Indirect Discharge VCP		~	10	, в О́́	Pass	
Air Discharge		pertures, and Ig Surfaces	8	Cor	10	B	Pass	

Report No.: DL-240705006ER

12.RF FIELD STRENGTH SUSCEPTIBILITY TEST

12.1 Block Diagram of Test Setup

12.2 Test Standard

EN 55014-2, EN 61000-4-3

12.3 Severity Levels and Performance Criterion

Severity Level 2, 3V / m

Performance criterion: A

12.4 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

Report No.: DL-240705006ER

All the scanning conditions are as follows:

Condition of Test Fielded Strength Radiated Signal Scanning Frequency Dwell time of radiated Waiting Time Remarks 3 V/m (Severity Level 2) Modulated 80 – 1000 MHz 0.0015 decade/s 1 Sec.

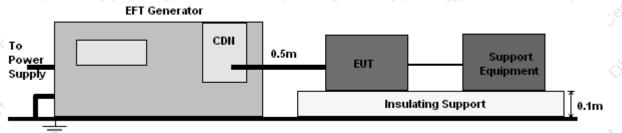
12.5 Test Results

N PASS

Please refer to the following page.

		R/S T	est Data		
Temperature:	25.1℃		Humidity:	55%	\$~ \$
Power Supply : AC 230V/50Hz DC 20V		Test Mode:	Mode 1/2	cert x	
Criterion:	A X	çe	Steps	1 %	Cor
Frequency (MHz)	Position		l Strength (V/m)	Required Level	Result
80 – 1000	Front, Right, Back, Left		3	A	Pass
Note: N/A		, O°	5	or or	$\mathcal{O}^{\mathbf{G}}$

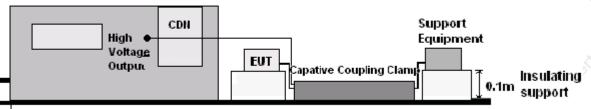
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 29 of 50



Report No.: DL-240705006ER

13.ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

13.1 Block Diagram of EUT Test Setup


For input a.c. / d.c. power port:

Ground Reference Plane

For signal lines and control lines:

EFT Generator

Ground Reference Plane

13.2 Test Standard

EN 55014-2, EN 61000-4-4 🔿

13.3 Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS

Performance criterion: B

13.4 Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

For input and output AC power ports:

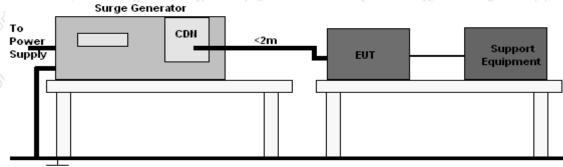
The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

Report No.: DL-240705006ER

0

13.5 Test Results

PASS


	EF	T Test Data		
Temperature:	24.5℃	Humidity:	53%	Ç ^o x
Power Supply :	AC 230V/50Hz	Test Mode	e: Mode 1	Cor
Coupling Line	Coupling Line Test Voltage (kV		Performance Criterio	
Cor L	±0.5, 1	y cont	В	PASS
Ň	±0.5, 1	O ^L	В	PASS
L-N	±0.5, 1	. ~	B	PASS

Report No.: DL-240705006ER

14.SURGE TEST

14.1 Block Diagram of EUT Test Setup

Ground Reference Plane

14.2 Test Standard

EN 55014-2, EN61000-4-5

14.3 Severity Levels and Performance Criterion

Severity Level: Line to Line, Level 2 at 1KV;

Severity Level: Line to Earth, Level 3 at 2KV.

Performance criterion: B

14.4 Test Procedure

1) Set up the EUT and test generator as shown on section 11.1

2) For line-to-line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.

3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.

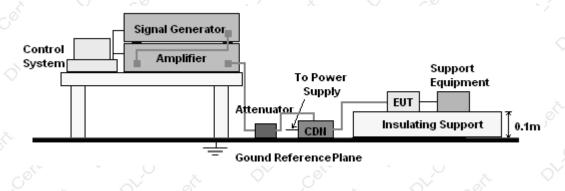
4) Different phase angles are done individually.

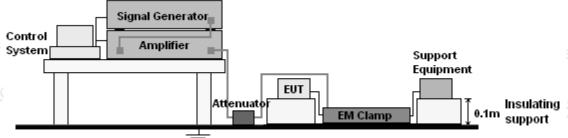
5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.

6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

14.5 Test Result

PASS


				Surge	Test Da	ita		
Temperature:		2	24.5 ℃	Humidity:		53%		
Power Sup	ply :		AC 230V/50H	z 🔿	Т	est Mode:	Mode 1	\Diamond^{\vee}
Location	Polar	ity	Phase Angle	No No Pul		Pulse Voltage (KV)	Performance Criterion	Result
š L-N	+,	,0	90	5		0.5,1	В	Pass
L-N	\diamond	S	270	5	X	0.5,1 0	В	Pass
Note: N/A		0	con		<i>у</i>		Cor V	


Report No.: DL-240705006ER

15.INJECTED CURRENTS SUSCEPTIBILITY TEST

15.1 Block Diagram of EUT Test Setup For input a.c. / d.c. power port:

For signal lines and control lines:

Ground Reference Plane

15.2 Test Standard

EN 55014-2, EN61000-4-6

15.3 Severity Levels and Performance Criterion

 \sim Severity Level 2: 3V(rms), 150KHz \sim 80MHz

Performance criterion: A

15.4 Test Procedure

1) Set up the EUT, CDN and test generator as shown on section 12.1

2) Let EUT work in test mode and measure.

3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

4) The disturbance signal described below is injected to EUT through CDN.

5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.

6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave

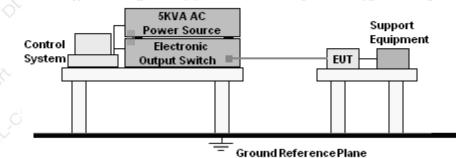
7) The rate of sweep shall not exceed 1.5×10^{-3} decades/s. Where the frequency is swept

incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

15.5 Test Result

PASS


CS Test Data							
Temperature:				Humidity:	53%	×.	
Power Supply	:			Test Mode:	Mode 1		
Frequency Range(MHz)	Injected Position	Strength	Modulation Signal	Freq. Step	Performance Criterion	Result	
0.15~80	AC Line	3V(rms), Unmodulated	AM 80%, 1kHz sine wave	1%	A A	Pass	
0.15~80	DC Line, Signal Line	3V(rms), Unmodulated	AM 80%, 1kHz sine wave	1%	or, ce	1	
0.15 ~ 80 Note: N/A	Signal Line					Cer	

Report No.: DL-240705006ER

16.VOLTAGE DIPS AND INTERRUPTIONS TEST

16.1 Block Diagram of EUT Test Setup

16.2 Test Standard

EN 55014-2, EN61000-4-11

16.3 Severity Levels and Performance Criterion Input and Output AC Power Ports.

Voltage Dips.

☑ Voltage Interruptions.

Environmental Phenomena	Test Specification	Units	Performance Criterion
oh oh	100	% Reduction period	C
Voltage Dips	60 10	% Reduction period	¢C os
t V Ger	30 25	% Reduction period	or c

16.4 Test Procedure

- 1) Set up the EUT and test generator as shown on section 14.1
 - 2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- 3) After each test a full functional check is performed before the next test.
- 4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
- 5) Record any degradation of performance.

Report No.: DL-240705006ER

0

16.5 Test Result

PASS

	DIPS	Test Data		
Temperature:	24.5℃	Humidity:	53%	\Diamond
Power Supply :	AC 230V/50Hz	Test Mode:	Mode 1	
Environmental Phenomena	Test Specification	Units	Performance Criterion	Result
of cent of	100 0.5	% Reduction period	C	Pass
Voltage Dips	60 10	% Reduction period	Č O	Pass
	30 25	% Reduction	° c	Pass

Report No.: DL-240705006ER

0

17.SETUP PHOTOGRAPHS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 37 of 50

Report No.: DL-240705006ER

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 38 of 50

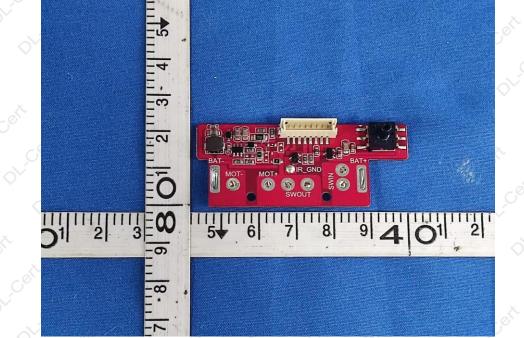
Report No.: DL-240705006ER

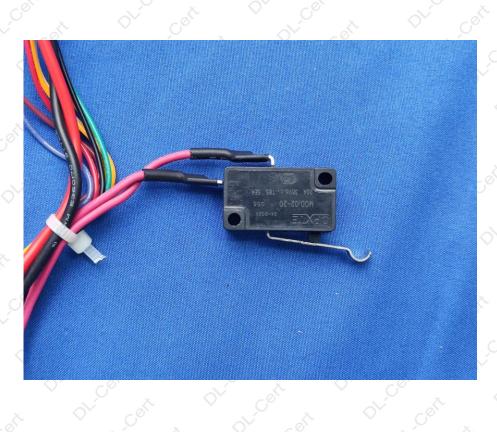
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 39 of 50

Report No.: DL-240705006ER

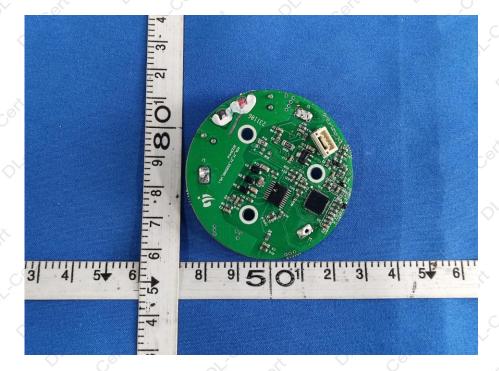
18.EUT PHOTOGRAPHS

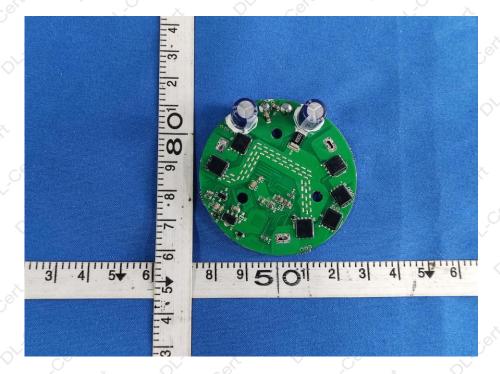
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 40 of 50

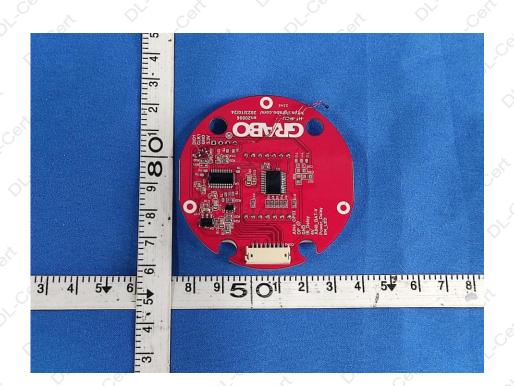



Report No.: DL-240705006ER

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 42 of 50







EL

Report No.: DL-240705006ER

***** END OF REPORT *****

DL-C

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 50 of 50